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Motivation

Fidelity measures of a numerical discretization method.

Numerical fidelity: convergence and stability indicate how
well the mathematics of the PDE are represented by the
numerical method.

Physical fidelity: how well the physics of the system are
preserved by the numerical method.

Preserving the key physical quantities during the numerical
solution is important to avoid non-physical numerical
artefacts.
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Motivation

Key physical quantities to preserve:

Conservation of primary quantities: mass and momentum.

Conservation of secondary quantities:[J. Perot, Annu. Rev. Fluid Mech. 2011]

Vorticity: Important for turbulence and shallow water
simulations.
Kinetic energy: Important for large-eddy simulation of
turbulent flow.
Entropy: Important for compressible flow simulations.
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Motivation

Examples of mumerical methods with conservation properties.

Mass:

Finite volume method.
Classic finite element method.
Discontiuous Galerkin method.
Staggered mesh methods on Cartesian meshes.
Covolume method on unstructured meshes.

Vorticity:

Staggered mesh methods on Cartesian meshes.
Covolume method on unstructured meshes.

Kinetic energy:

Staggered mesh methods on Cartesian meshes.
Covolume method on unstructured meshes.
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The covolume method

The covolume method, originally
introduced by Nicolaides (1989) and
Hall et al. (1991), is a low order
method that is free of spurious modes.

The covolume method convergence
was estimated by Nicolaides (1992) to
be of second order rate for
structured/semi-structured meshes
and first order accurate otherwise.
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The covolume method

The local/global conservation properties of the covolume
method were later revealed by Perot (2000).

The conservative behavior of the covolume method is
attributed to the discrete differential operators that mimic the
behavior of their smooth counterparts.

The resulting discrete system can be manipulated into discrete
conservation statements for key physical quantities.

The covolume method conserves mass, momentum, vorticity
and kinetic energy.
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Discrete Exterior Calculus Discretizations

In computer graphics some the Discrete Exterior Calculus
(DEC) approach to simulate incompressible flows.

The developed discretizations [Elcott et. al (2007) and Mullen et.

al (2009)] have similarities with the covolume method, but are
applicable on both flat/curved surfaces.

The convective term is approximated through
finite-volume-based or back tracing of characteristics and
interpolation schemes.

Little quantitative analysis of the scheme performance is
presented.
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Objective

1 Use Discrete Exterior Calculus (DEC) to derive a conservative
discretization of incompressible Navier-Stokes equations that
is applicable for 2D flat/curved and 3D domains with
unstructured meshes.

2 Conduct quantitative analysis for numerical convergence and
conservation.
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Navier-Stokes Equations

∂u

∂t
− µ∆u + (u.∇)u +∇p = 0

∇.u = 0

Using the vector identities:

∆u = ∇(∇.u) −∇ × (∇× u)

(u.∇)u =
1

2
∇(u.u) − u × (∇× u)

Define the dynamic pressure: pd = p + 1
2(u.u)

∂u

∂t
+ µ∇×∇× u − u × (∇× u) +∇pd = 0

∇.u = 0
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Navier-Stokes Equations in Differential Geometry Notation

∂u

∂t
+ µ∇×∇× u − u × (∇× u) +∇pd = 0

∇.u = 0

For any vector field u and a scalar field f :

(∇×∇× u)♭ = (−1)N+1
∗ d ∗ du♭,

(u × (∇× u))♭ = (−1)N+1
∗ (u♭ ∧ ∗du♭),

(∇.u)♭ = ∗d ∗ u♭,

(∇f )♭ = df

∂u♭

∂t
+ (−1)N+1µ ∗ d ∗ du♭ + (−1)N+2

∗ (u♭ ∧ ∗du♭) + dpd = 0,

∗ d ∗ u♭ = 0
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An Alternative Derivation

Starting from Navier-Stokes equation in coordinate invariant form
(See Abraham, Marsden, Ratiu, ”Manifolds, Tensor Analysis and
Applications”)

∂u♭

∂t
+ µ(δd + dδ)u♭ + £uu

♭
−

1

2
d(u♭(u)) + dp = 0

where δ is the codifferential operator defined as
δ = (−1)N(k−1)+1 ∗ d∗.
Using Cartan homotopy formula:

£uu
♭
= diuu

♭
+ iudu

♭
= d(u♭(u)) + iudu

♭

∂u♭

∂t
+ µδdu♭ + iudu

♭
+

1

2
d(u♭(u)) + dp = 0.

Samtaney, NASA Ames, July 30 2015 Navier-Stokes DEC



An Alternative Derivation: Cont.

∂u♭

∂t
+ µδdu♭ + iudu

♭
+

1

2
d(u♭(u)) + dp = 0.

Defining the dynamic pressure 0-form as pd = p + 1
2(u

♭(u)).

Substitute with δ = (−1)N+1 ∗ d∗.

Substitute for the contraction with [A. Hirani, PhD Dissertation,

Caltech (2003)]

ixα = (−1)k(N−k) ∗ (∗α ∧ x♭)

∂u♭

∂t
+ (−1)N+1µ ∗ d ∗ du♭ + (−1)N−2

∗ (u♭ ∧ ∗du♭) + dpd = 0.

Applying the exterior derivative (d) to the above equation

∂du♭

∂t
+ (−1)N+1µd ∗ d ∗ du♭ + (−1)Nd ∗ (u♭ ∧ ∗du♭) = 0.
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Domain Discretization

The domain Ω is approximated by the simplicial complex K .

A k-simplex is denoted by σk = [v0, ..., vk] ∈ K .

The circumcentric dual to the simplicial complex K is the dual
complex ⋆K .

For a primal k-simplex σk ∈ K , its dual is an (N − k)-cell
denoted by ⋆σk ∈ ⋆K
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Discrete Exterior Calculus

The DEC operators (e.g. exterior derivative, Hodge star,
wedge product, etc) have the advantage that they satisfy the
same rules/identities that characterizes their smooth
counterparts.

Such mimetic behavior of the discrete operators is known to
result in preserving the physics implied in the smooth
governing equations at the discrete level.
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Discrete Exterior Calculus

Discrete differential forms: a discrete form
can be thought as the integration of the
smooth form over a discrete mesh object;
i.e. line, area or volume.

For example, for the smooth velocity 1-form
u♭, its discretization can be defined:

on primal edges σ1 as v = ∫σ1 u d l.
on dual edges ⋆σ1 as u = ∫⋆σ1 u d l.
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Discrete Exterior Calculus

The space of discrete k-forms defined on primal and dual mesh
complexes is denoted by C k(K) and Dk(⋆K), respectively.

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

D2(⋆K)
−dT0
←ÐÐÐ D1(⋆K)

dT1
←ÐÐÐ D0(⋆K)

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)
d2

ÐÐÐ→ C 3(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

×
×
×
Ö
∗3

D3(⋆K)
dT0

←ÐÐÐ D2(⋆K)
dT1

←ÐÐÐ D1(⋆K)
dT2

←ÐÐÐ D0(⋆K)
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Discrete Exterior Calculus

d0β =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0
0 −1 1 0
1 0 −1 0
0 −1 0 1
0 0 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0

β1

β2

β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

d1 = [
1 1 1 0 0
0 −1 0 1 1

]

∗1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∣⋆σ1
0 ∣

∣σ1
0 ∣

0 0 0 0

0
∣⋆σ1

1 ∣

∣σ1
1 ∣

0 0 0

0 0
∣⋆σ1

2 ∣

∣σ1
2 ∣

0 0

0 0 0
∣⋆σ1

3 ∣

∣σ1
3 ∣

0

0 0 0 0
∣⋆σ1

4 ∣

∣σ1
4 ∣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Discrete Exterior Calculus

For the discrete wedge product, we use the definition in [ Hirani Ph.D.

dissertation (2003)] for primal-primal wedge product:

The wedge product between a discrete primal
1-form α and a discrete primal 0-form β defined
over a primal edge [0,1] is

⟨α ∧ β, [0,1]⟩ =
1

2
⟨α, [0,1]⟩(⟨β, [0]⟩ + ⟨β, [1]⟩).

The discrete wedge product expression for the
whole mesh:

1

2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0 α0 0 0
0 α1 α1 0
α2 0 α2 0
0 α3 0 α3

0 0 α4 α4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0

β1

β2

β3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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2D Discretization

The discretization of NS equations is carried out here following the
exact fractional step method [Hall et. al (1991), Chang et. al (2002)],
consisting of two steps:

1 The discretization is carried out for the vorticity form of
Navier-Stokes equations.

2 Substitute the velocity by its definition as the curl of a stream
function.
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2D Discretization: Cont.

∂du♭

∂t
+ (−1)N+1µd ∗ d ∗ du♭ + (−1)Nd ∗ (u♭ ∧ ∗du♭) = 0.

C 0(K)
d0

ÐÐÐ→ C 1(K)
d1

ÐÐÐ→ C 2(K)

×
×
×
Ö
∗0

×
×
×
Ö
∗1

×
×
×
Ö
∗2

D2(⋆K)
−dT0
←ÐÐÐ D1(⋆K)

dT1
←ÐÐÐ D0(⋆K)

−dT0
Un+1 −Un

∆t
+ µdT0 ∗1 d0 ∗

−1
0 [−dT0 U + dbV ]

− dT0 ∗1 Wv ∗
−1
0 [−dT0 U + dbV ] = 0.
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2D Discretization: Cont.

The discrete representation of the continuity equation is:

∗2d1 ∗
−1
1 U = 0

U is in the null space of [∗2d1∗
−1
1 ].

[∗2d1∗
−1
1 ][∗1d0] = ∗2d1d0 = 0

The vector U can uniquely be expressed in terms of the basis
[∗1d0]

U = ∗1d0Ψ
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2D Discretization: Cont.

−dT0
Un+1 −Un

∆t
+ µdT0 ∗1 d0 ∗

−1
0 [−dT0 U + dbV ]

− dT0 ∗1 Wv ∗
−1
0 [−dT0 U + dbV ] = 0.

Substitute with U = ∗1d0Ψ

−
1

∆t
dT0 ∗1 d0Ψn+1

− µdT0 ∗1 d0 ∗
−1
0 dT0 ∗1 d0Ψ

+ dT0 ∗1 Wv ∗
−1
0 dT0 ∗1 d0Ψ = F .

F = 1
∆td

T
0 Un − µdT0 ∗1 d0 ∗

−1
0 dbV + dT0 ∗1 Wv ∗

−1
0 dbV
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2D Discretization: Cont.

The linear system is solved in two steps as a predictor-corrector
method.

1 First, we advance the system explicitly by a half time step

[−
1

0.5∆t
dT0 ∗1 d0]Ψn+ 1

2

= F + [µdT0 ∗1 d0 ∗
−1
0 dT0 − dT0 ∗1 W

n
v ∗

−1
0 dT0 ]Un

Ψn+ 1
2 ⇒ Un+ 1

2 = ∗1d0Ψn+ 1
2 ⇒ W

n+ 1
2

v

2 Then solve the linear system semi-implicitly

[−
1

∆t
dT0 ∗1 d0 − µd

T
0 ∗1 d0 ∗

−1
0 dT0 ∗1 d0

+ dT0 ∗1 W
n+ 1

2
v ∗

−1
0 dT0 ∗1 d0]Ψ

n+1
= F

The evaluation of the tangential velocity at (n + 1
2 ) was shown

[Perot (2000)] to be necessary for kinetic energy conservation.
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Conservation Properties: Mass conservation

U = ∗1d0Ψ

The discrete continuity equation is:

∗2d1 ∗
−1
1 U = 0

[∗2d1∗
−1
1 ][∗1d0]Ψ = ∗2d1d0Ψ = 0

The developed formulation guarantees the
mass conservation up to the machine
precision, regardless of the error incurred
during the linear system solution.
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Conservation Properties: Vorticity conservation

−
dT0 Un+1 − dT0 Un

∆t
+µdT0 ∗1d0∗

−1
0 [−dT0 U]−dT0 ∗1Wv ∗

−1
0 [−dT0 U] = 0

−
dT0 Un+1 − dT0 Un

∆t
+ µdT0 [∗1d0X ] − dT0 [∗1WvX ] = 0

The vorticity out-flux from a dual cell
boundary is exactly equal to the
vorticity in-flux to the neighboring
dual cell.

The vorticity is conserved locally and
globally up to the machine precision.
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How this discretization is different?

The discretization is entirely based on the DEC framework.

The discretization is similar to some of the covolume method
discretizations only for the special case of 2D structured
triangular mesh on flat domains, but different otherwise.

Unlike all covolume discretizations, the current discretization
is capable of simulating flows over both flat and curved
surfaces.
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Results: Driven cavity

The driven cavity flow is
simulated at Re = 1000.

The simulations are carried out
on a Delaunay mesh and a
structured-triangular mesh with
32482 and 32258 elements,
respectively → almost the same
resolution as a 128 × 128
Cartesian mesh.

The time step ∆t = 0.1, and the
steady solution is attained at
almost T = 100.
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Results: Driven cavity

Figure: Cross-section of the steady velocity profile (T = 100) at the two
domain center lines for driven cavity test case at Reynolds number =
1000. The simulation results are compared with Ghia (1982).
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Results: Taylor-Green vortices

The decay of Taylor-Green
vortices with time has an
analytical solution that for the
2D case is expressed as

ux = −cos(x)sin(y)e
−2νt

uy = sin(x)cos(y)e−2νt

The simulation is conducted
using a Delaunay mesh
consisting of 50852 elements, a
time step ∆t = 0.1 and
kinematic viscosity ν = 0.01.

Periodic boundary conditions
applied on all domain
boundaries.
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Results: Taylor-Green vortices

: :

Figure: The vorticity contour plot for Taylor-Green vortices at time (a)
T = 0, (b) T = 10.
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Results: Taylor-Green vortices

: :

Figure: Cross-section of the velocity x and y-components profile at the
two domain center lines for Taylor-Green vortices at time T = 10.
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Results: Poiseuille flow

The Poiseuille flow has a steady analytical solution in a unit
square with µ = 1.0

ux = y(1 − y), uy = 0

The L2-norm of the velocity 1-form (u) error is calculated
according to Hall et al.(1991) as

∥uexact − u∥ =
⎡
⎢
⎢
⎢
⎣
∑
σ1

(uexact − u)2
∣σ1

∣ ∣ ⋆ σ1
∣
⎤
⎥
⎥
⎥
⎦

1/2

The simulation is carried out for structured-triangular,
Delaunay and well-centered meshes of different resolutions.
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Results: Poiseuille flow

The velocity 1-form u (flux) convergence is of a second order
rate for the structured-triangular mesh case, and with a first
order rate unstructured meshes.
The velocity vector converges in the first order fashion due to
its first order interpolation scheme.
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Results: Double shear layer

The initial flow for double shear layer
represents a shear layer of finite thickness
with a small magnitude of vertical velocity
perturbation

ux =

⎧⎪⎪
⎨
⎪⎪⎩

tanh((y − 0.25)/ρ), for y ≤ 0.5,

tanh((0.75 − y)/ρ), for y > 0.5,

uy = δ sin(2πx)

with ρ = 1/30 and δ = 0.05.

The simulation is carried out for an inviscid flow (µ = 0).

Five simulations are conducted using a time step of
∆t = 0.001 on structured-triangular meshes with number of
elements equal to 3042, 12482, 32258, 50562 and 204800.

Periodic boundary conditions applied on all domain
boundaries.
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Results: Double shear layer
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Results: Double shear layer

The kinetic energy is calculated as ∫Ω u.u dΩ.

The relative kinetic energy error (KE(0)−KE(T)KE(0) ) is calculated
at simulation time T = 2.0.
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Results: Taylor vortices

The vorticity distribution for each Taylor
vortex is expressed as [A. McKenzie, PhD

Dissertation, CalTech (2007)]

ω(x , y) =
G

a
(2 −

r2

a2
) exp(0.5(1 −

r2

a2
))

with G = 1.0, a = 0.3.

The domain is initialized with two vortices
separated by a distance of 0.8.

The simulations are carried out for an inviscid flow (µ = 0) on
a mesh consisting of 132204 equilateral triangular element,
using various time steps in the range [1.0 − 0.002].

Periodic boundary conditions applied on all domain
boundaries.
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Results: Taylor vortices
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Results: Taylor vortices

The relative kinetic energy error (KE(0)−KE(T)KE(0) ) is calculated at
simulation time T = 20.0.
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Results: Vortex leapfrogging
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Results: Taylor vortices on a spherical surface

A unit sphere surface is initialized with two
vortices, separated by a distance of 0.4,
having the distribution

ω(x , y) =
G

a
(2 −

r2

a2
) exp(0.5(1 −

r2

a2
))

with G = 0.5, a = 0.1.

The simulation is carried out for an inviscid flow (µ = 0) using
a mesh containing 327680 triangular elements, with various
time steps in the range [1.0 − 0.05].
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Results: Taylor vortices on a spherical surface
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Results: Taylor vortices on a spherical surface

The relative kinetic energy error (KE(0)−KE(T)KE(0) ) is calculated at
simulation time T = 10.0.
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Results: Vortices ring on a spherical surface

Consider N equidistant point vortices,
having the same strength, positioned on a
circle with fixed latitude on a spherical
surface .[Polvani et. al (1993)].

It was shown analytically that the vortices
will rotate around the z-axis in a stable
fashion given that the circle’s latitude θ < θc
and the number of vortices N ≤ 7.

For N = 6, the critical polar angle θc ∼ 0.464.
Figure: [Vankerschaver et. al

(2014)]
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Results: Vortices ring on a spherical surface

the point vortices are replaced with vortices
having the distribution

ω =
τ

cosh2(3r
a )

with τ = 3.0 to be the vortex strength,
a = 0.15 is the vortex radius.

The vortices are placed on a unit sphere at
latitude θ = 0.4.

The spherical surface is meshed with 81920
elements, and the simulation is conducted
for an inviscid flow (µ = 0) with a time step
∆t = 0.005.
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Results: Vortices ring on a spherical surface

: :

Figure: The vorticity contour plot for 6 vortices on a spherical surface at
latitude θ = 0.4 at time: (a) T=0.0 and (b) T=36.0.

The cyclic motion of the vortices can be captured by monitoring

the relative solution change ( ∣∣U(t)−U(0)∣∣
∣∣U(0)∣∣ ) w.r.t. the initial solution.
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Results: Vortices ring on a spherical surface

The relative solution change ( ∣∣U(t)−U(0)∣∣
∣∣U(0)∣∣ ).
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Results: Vortices ring on a spherical surface

The relative change in the kinetic energy at time T = 36 is
KE(T=0)−KE(T=36)

KE(T=0) = 9.0 × 10−6.
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Conclusions

A conservative discretization for NS equations was derived
using DEC.

The scheme converges with second order for
structured/semi-structured meshes, and first order for
otherwise unstructured meshes.

The mass and vorticity were conserved up to machine
precision for all conducted test cases.

The kinetic energy converges with second order with the mesh
size and time step for the tested cases on
structured/semi-structured meshes.
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